返回首页 | 设为首页  加入收藏 订阅本站
一起去留学教育资讯 → 四年级数学三角形三边关系案例

四年级数学三角形三边关系案例

由用户“123oeizuro5lp2”分享发布 发布时间:2012-12-21 11:11:41

产生学习数学的兴趣。 重点:三角形三边之间的关系 难点:探索发现三角形三边之间的关系。 教学准备:小棒、课件 教学过程: 一、引入 1、师:同学们,我们已经认识了三角形,你能告诉大家什么是三角形吗? 生:由三条线段围成……

课题案例:三角形任意两边的和大于第三边

教学内容:人教版八册p82

教学目标:

1、通过动手操作和观察比较,使学生知道三角形任意两边的和大于第三边;

2、能根据三角形三边的关系解释生活中的现象,提高运用数学知识解决实际问题的能力;提高观察、思考、抽象概括的能力以及动手操作的能力;

3、让学生积极参与探究活动,获得成功体验,产生学习数学的兴趣。

重点:三角形三边之间的关系

难点:探索发现三角形三边之间的关系。

教学准备:小棒、课件

教学过程:

一、引入

1、师:同学们,我们已经认识了三角形,你能告诉大家什么是三角形吗?

生:由三条线段围成的图形叫做三角形。

师:不错,那么三条线段就一定能围成三角形吗?能(不能)

师:那我们就来围围看吧。谁愿意上来围?(两生上台演示——评析)

2、师:看来,有的三条线段能围成三角形,有的三条线段不能围成三角形。那下面我们大家都来围围三角形,好不好?

二、三角形三边关系的探究

(一)围三角形,创建研究素材

1、师:(1)同桌两人合作,每次从5根小棒中任取3根来围三角形,将围的情况记录在白纸上。要求分工合作:一人围,一人记录。

2、学生操作(教师指导)

3、反馈:学生汇报能和不能围成的情况(教师板书记录

师:还有吗?情况不少,我们就用省略号来表示吧!

[检测错误情况——对同学们汇报上来的能和不能围成三角形的各种情况,对照自己的记录,看看谁还有意见?]

(二)思考讨论,发现规律

1、师:同学们,能不能围成三角形看来跟三条线段的什么有关?(长度),那么究竟怎么样的三条线段不能围成三角形?怎么样的三条线段又能围成三角形,下面我们先通过自己观察、思考,再与同桌进行讨论来发现其中的奥秘。

2、学生讨论(教师参与)

3、反馈

层次1:

师:下面我们先来看怎样的三条线段不能围成三角形?

(1)生:我们发现两边的和小于(等于)第三边就不能围成三角形。比如2+2小于5,就不能围成三角形。(师板书:2+2<5,)

师:真的吗?来围给我们看看?(生上台围,展示)

(2)师:是不是所有的情况都是小于呢?

生:我们发现两边的和等于第三边也不能围成三角形。3+3等于6,就不能围成三角形。(师板书:3+3=6)

师:也请你围给我们看看?(生展示)

检验其余记录下来的情况。(师生齐算,板书算式)

层次2:

(1)列举发现

师指着板书:这些能围成三角形的三条边又有怎样的关系呢?

生:我们发现两条边的和大于第三条边就能围成三角形。如2+3>4,这样就能围成三角形。(师板书)

师:谁有不同发现?

生:我们认为必须每两条边相加和大于第三条边才能围成三角形。比如2+3>4、2+4>3、4+3>2(师板书)

哪些组还有不同发现?

生:我们认为最短的两边的和大于第三条边就能围成三角形。如只要2+3>4,就能围成三角形。

师:还有吗?

(2)辨析

师:各自说说理由吧!

生:因为如果只考虑一种情况是不行的,有时两条线段的和大于第三条线段,也不能围成三角形。

师:举个例子呢?引导学生引用“不能”的情况来反证。

生:比如在刚才不能围成的情况中:3+4<8、8+4>3、8+3>4,出现了两个大于的情况,但只要存在两边和小于(等于)第三边的情况,也不能围成三角形。所以只考虑一种情况是不行的。

师:那么为什么最短的两条线段的和大于最长的线段就能围成三角形呢?

生:因为最短的两条线段的和大于最长的线段,那么另外两组边加起来肯定比这一组长。意思是如果2+3>4,那么2+4肯定>3,4+3肯定>2。

(师用实物在黑板上演示)

小结:因为只要最短两边的和大于了最长的边,那么其他任意两边的和都会大于第三条边的。所以你们两组的观点实际上是一致的。这也就是三角形三边关系的一个

重要结论:三角形任意两边的和大于第三边

三、应用

1、下面哪几组的三条线段能围成三角形?

(3、4、5)(2、3、7)(3、3、3)(3、3、6)

如果拿掉的是6分米,那么配上的一根最短应该是几?最长可以是几?

3、机动:16分米长的小棒如果要围成一个三角形,我们必须将它截成3段,其中最长的一边最多可以截几分米?为什么?具体可以怎样截,你有没有方法可以将所有的情况不遗漏也不重复的列举出来?(要求边取整分米数)

四、总结

师:这节课你有哪些收获?关于三角形三边关系还有值得我们探索的地方,比如三角形任意两边的差与第三边有怎样的关系?有兴趣的同学课外可以自己进行探索。

(另外还有一种思路:先告诉学生结论,然后通过验证来检查结论是否正确)

四年级数学三角形三边关系案例由用户“123oeizuro5lp2”分享发布 ( www.177liuxue.cn )编辑整理,转载请保留出处